N.RN.1

I CAN... rewrite expressions involving rational exponents using the properties of exponents.

Aocapajakas

Monomial

A number, a variable, or a product of a number and one or more variables Examples

Power = 5² ______

rules of exponents:

Product of Powers: $a^m \cdot a^n = a^{m+n}$ The substitute the exponents		
If multiplying two numbers with the same base, the exponents		
5 ² .5 ⁶	y4.y3.y	
(7y5)(by)	(-3x²y²)(5xyb)	
Quotient of Powers: $\frac{a^m}{a^n} = a^{m-n}$		
If dividing two numbers with the so	ime base, the exponents	
y 6 13 62	10a7b9 15a5b9	

Power of a Power: $(a^m)^n =$		
If raising a power to a power,the exponents		
Fxamples: Simplify. Write each answer using only positive exponents:		
Examples: Simplify. Write each answer usin $(x^z)^8$	(-y-3)-4	
Power of a Product: $(ab)^m =$ Find the power of each factor in the parenthesis and multiply		
$(4x^{3}yz)^{3}$ $(7xy)^{2}$	(6x-6y-7)-2	
Power of a Quotient: $\left(\frac{a}{b}\right)^m = -$ For any numbers "a" and "b" where $b \neq 0$, if the quotient of a and b is raised to a		
power, raise both the numerator and the denominator to the given power		
$\left(\frac{3}{5}\right)^2$	$\left(\frac{2a^5}{b^7}\right)^2$	
$\left(\frac{3a^4}{b^7}\right)^3$	$\left(\frac{\ddot{a}^2\ddot{b}^5}{\ddot{c}^{"}}\right)^{-6}$	

Zero Exponent: $a^0 =$

Any nonzero number with an exponent of zero is equivalent to

WHY?? Let's explore $\frac{8^2}{8^2}$

(-3x+7)°

8x°+5

Negative Exponent $a^{-n} = -$

For any nonzero number "a" raised to a negative exponent, place the power in the denominator to rewrite the power with a positive exponent

WHY?? Let's Explore $\frac{b^2}{b^5}$

 2^{-3}

 $3x^{-3}$